If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-20X=320
We move all terms to the left:
X^2-20X-(320)=0
a = 1; b = -20; c = -320;
Δ = b2-4ac
Δ = -202-4·1·(-320)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{105}}{2*1}=\frac{20-4\sqrt{105}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{105}}{2*1}=\frac{20+4\sqrt{105}}{2} $
| 2x-15+40+2x=180 | | 4x-15+40=90 | | 4x-15+40=180 | | (6x-17)=(5x-8) | | 4x+15+40=90 | | 2x+2x+15+40=180 | | 4x-15-40=180 | | 4x+15+40=180 | | –8v+7v=10 | | 16=4c–2c | | 15x=580 | | 6=-16t^2+35t+6 | | z-42/3=23/2 | | 15x=340 | | G(5)=5x/3x-19 | | 59+2x+9+62=180 | | 59+59+2x+9+62=180 | | 6x-19=139 | | 1/216=b3 | | 15=(x)(1.25) | | 5(3x-2)+5=10 | | 6e+2e-3=4e+5 | | –(f+–6.6)=–6.5 | | 270-(64.651+62.7+63.78)=y | | -11n-9=-9-11n-20 | | 4(-5t+8)=8-18t-14 | | –2.4(m−8.9)+5=–6.52 | | -14k+5+18k=15+4k | | -0.5(q+6)=-7.5 | | 3^b=5b= | | 48=|8c| | | 3x²+x+1=0 |